카테고리 없음
Autoencoder 특화 아키텍처 실무 구현
8353cc
2025. 4. 16. 11:14
728x90
SMALL
특화 Autoencoder 아키텍처 실무 구현
1. Variational Autoencoder (VAE)
import torch
import torch.nn as nn
import torch.nn.functional as F
class VAE(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(100, 64)
self.fc21 = nn.Linear(64, 20) # mu
self.fc22 = nn.Linear(64, 20) # logvar
self.fc3 = nn.Linear(20, 64)
self.fc4 = nn.Linear(64, 100)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def loss_function(recon_x, x, mu, logvar):
BCE = F.mse_loss(recon_x, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
2. Denoising Autoencoder (DAE)
class DenoisingAutoencoder(nn.Module):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(100, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU()
)
self.decoder = nn.Sequential(
nn.Linear(32, 64), nn.ReLU(),
nn.Linear(64, 100), nn.Sigmoid()
)
def forward(self, x):
z = self.encoder(x)
return self.decoder(z)
# 노이즈 추가
noisy_X = X + 0.3 * torch.randn_like(X)
# 학습 루프에서 noisy_X 입력, X를 정답으로 사용
for x_batch in loader:
optimizer.zero_grad()
output = dae(noisy_X)
loss = criterion(output, X)
loss.backward()
optimizer.step()
3. Convolutional Autoencoder (CAE)
class ConvAutoencoder(nn.Module):
def __init__(self):
super().__init__()
# Encoder
self.encoder = nn.Sequential(
nn.Conv2d(1, 16, 3, stride=2, padding=1), # -> 16x14x14
nn.ReLU(),
nn.Conv2d(16, 8, 3, stride=2, padding=1), # -> 8x7x7
nn.ReLU()
)
# Decoder
self.decoder = nn.Sequential(
nn.ConvTranspose2d(8, 16, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 1, 3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
728x90
반응형
LIST